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A b s t r a c t. The influence of climate and topography on crop 
condition and yield estimates is most effectively monitored by 
non-invasive satellite imagery. This paper evaluates the efficiency 
of free-access Sentinel 2 and Landsat 5, 7 and 8 satellite images 
scanned by different sensors on wheat growth and yield predic-
tion. Five winter and spring wheat cultivars were grown between 
2005 and 2017 in a relatively small 11.5 ha field with a 6% slope. 
The normalized difference vegetation index was derived from 
the satellite images acquired for later growth phases of the wheat 
crops (Biologische Bundesanstalt, Bundessorenamt and Chemical 
industry 55 – 70) and then compared with the topography wetness 
index, crop yields and yield frequency maps. The results showed 
a better correlation of data obtained over one day (R2 = 0.876) 
than data with a one-day delay (R2 = 0.689) using the Sentinel 
2 B8 band instead of the B8A band for the near-infrared part of 
electromagnetic spectrum in the normalized difference vegetation 
index calculation. 

K e y w o r d s: satellite sensors, agriculture, satellite imagery, 
wheat varieties

INTRODUCTION

Optical satellite images are widely used to evaluate 
long-term changes in landscape cover and vegetation 
(Jamali et al., 2015; Julien et al., 2011). They have prov-
en to be effective in studying spatio-temporal changes in 

crop development and crop yield prediction (Shanahan et 
al., 2001; Kumhálová et al., 2014). Information obtained 
from optical satellite images provides agronomists with 
a better understanding of crop growth in relation to rainfall 
and site-specific agro-ecological conditions. This knowl-
edge is crucial for crop stress detection, especially in years 
of decreased precipitation and uneven water distribution 
(Domínguez et al., 2017).

A new generation of satellites equipped with improved 
sensors can help agronomists to maximize and sustain crop 
production during climate change. The information they 
deliver contributes to a better understanding of crop culti-
var response to water deficit.

The actual information concerning crop growth and cul-
tivar adaptation to weather and site conditions during the 
vegetation season is provided by freely available data from 
several satellites: Landsat 5 (L5) with a Thematic Mapper 
(TM) sensor, Landsat 7 (L7) with an Enhanced Thematic 
Mapper Plus (ETM+) instrument (Domínguez et al., 2015, 
2017), Landsat 8 (L8) with an Operational Land Imager 
(OLI) and Sentinel 2 (S2) with a Multi-Spectral Instrument 
(MSI) (Clevers et al., 2017; Flynn et al., 2020). However, 
in order to obtain useful information about crop spectral 
reflectance, advanced knowledge is required for appropri-
ate data processing. Traditional satellite systems have been 
used for agricultural purposes (Kumhálová and Matějková, 
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2017) and they were helpful in demonstrating trends and 
discrete changes in crop development time series (Goméz 
et al., 2016), even though other studies based on Landsat 
satellite images showed that a 30 m spatial resolution is too 
imprecise in practice (Scudiero et al., 2016).

The European Space Agency’s (ESA) S2 satellite 
with 10 to 60 m spatial resolution for individual spectral 
bands provides 5 days of temporal resolution at the equa-
tor (Copernicus Open Access Hub, 2018), which enables 
the detection of important plant biophysical and biochemi-
cal variables such as leaf water content and crop health 
(Chemura et al., 2018).

The oldest and most widely used vegetation index is 
the normalized difference vegetation index (NDVI). This 
index is based on crop canopy absorption differences in the 
red and near-infrared electromagnetic spectra (Julien et al., 
2011). NDVI can be used to successfully monitor the sea-
sonal variability of plant phenology caused by changes in 
temperature and various rainfall regimes (Heumann et al., 
2007), it is therefore suitable for detecting in-field variabil-
ity (Viña et al., 2011).

Crops reach satisfactory yields only with a sufficient 
water supply (Schmidt and Persson, 2003). On-field 
water redistribution is a function of both soil properties 
and topography. The literature includes records of several 
methods of describing and modelling these redistribution 
processes. The most useful models are the D8 algorithm, 
the MFD8 algorithm and the topography wetness index 
(TWI), which describe on-field water redistribution and 
moisture potential at different levels (Schmidt and Persson, 
2003; Sørensen et al., 2006; Kumhálová et al., 2014).

The foregoing research showed that the interpretation 
of crop maps based on spectral indices is very difficult 
without any additional knowledge of soil properties, topog-
raphy, weather and other environmental factors influencing 
crop yield variability (Doerge, 1999; Long and McCallum, 
2014; Jin et al., 2017). Despite these limitations, yield 
potential can be defined and modelled to provide a better 
understanding of crop growth and final yield. For example, 
Evans (1993) defined yield potential as the yield resulting 
from growing crops in environments with an unlimited 
supply of water and nutrients, and where pests, weeds and 
biotic disease factors are effectively controlled. Andarzian 
et al. (2008) showed that the yield potential of a given crop 
cultivar in a specific growth environment is determined 
by the amount of incident solar radiation, temperature and 
plant density. 

Numerous studies have also been published in the past 
two decades which have established crop yield gaps as the 
difference between crop yield potential and actual farm 
yields. Understanding the causes of yield gaps is neces-
sary for increasing crop production at both local and global 
scales, especially when climate change effects on future 
crop yields and land-use change are considered (Grassini 
et al., 2015; Guilpart et al., 2017; Mueller et al., 2013). For 

visualization and an improved interpretation of year-to-year 
crop yield variability, Maphanyane et al. (2018) developed 
the concept of a normalized yield frequency map, which 
uses the conversion of absolute yields to relative yields.

Wheat (Triticum spp.) is one of the most important 
global agricultural crops. In order to understand wheat 
growth status at each specific developmental stage, farm-
ers use various advanced tools to optimize wheat yield and 
grain quality (Wu et al., 2016). In this regard, Wheeler et 
al. (1996) determined that environmental conditions, espe-
cially mean temperature, have a significant impact on wheat 
growth and development. Šíp et al. (2011) reported that 
central European winter wheat cultivars registered between 
1976 and 2009 were specifically adapted to regions with 
different climatic conditions. 

Crop satellite monitoring using multi-temporal images 
helped to establish that reproductive wheat growth after 
the flowering stage is closely related to grain yield, as the 
NDVI values after the flowering stage reflected crop yields 
(Benedetti and Rossini, 1993; Zhang et al., 2004; Du and 
Noguchi, 2017). In the currently changing climatic condi-
tions, the knowledge of actual wheat growth status allows 
for the appropriate agronomy decisions to be taken (Wu et 
al., 2016; Du and Noguchi, 2017).

In our study, we assessed the spectral response of win-
ter wheat using satellite images acquired during 4 growing 
seasons (2005, 2009, 2011 and 2013); in addition, spring 
wheat grown in 2017 was also included in the study. The 
evaluation was based on the NDVI spectral index, the crop 
yield frequency map, the actual crop yield, the topography 
wetness index as well as temperature and precipitation 
meteorological data. The primary objective was to deter-
mine the importance of individual yield influencing factors 
on wheat yields and to establish the most suitable method 
of estimating wheat yields in relation to a changing climate. 

The secondary objective was to compare the agricul-
tural applicability of Sentinel 2 MSI and Landsat 8 OLI 
satellite images and to establish which of the available 
near-infrared bands used by the Sentinel 2 MSI sensor is 
more suitable for NDVI calculation focused on agricultural 
applications.

MATERIALS AND METHODS

The 11.5ha long-term wheat crop study area is locat-
ed in Prague-Ruzyně in the Czech Republic at 50°05’ N, 
14°17’30’’ E. The predominant soil type is Haplic Luvisol 
and the elevation ranges from 338.5 to 357 m a.s.l. with 
a southern aspect and 6% average slope. Detailed infor-
mation concerning this experimental field is included in 
(Kumhálová and Moudrý, 2014). The predominant man-
agement practices are based on the conventional arable soil 
tillage technology of ploughing. While fixed crop rotation 
has been under scientific control since 2001, this research 
only assessed winter wheat data from 2005, 2009, 2011 and 
2013 and two spring wheat cultivars in 2017.
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The winter wheat yield in the years 2005 and 2013 was 
determined by a Sampo combine harvester with an LH 500 
yield monitor (LH Agro, Denmark). This was equipped 
with a DGPS receiver and an EGNOS correction, which 
had an accuracy of ± 0.1 to 0.6 m. The yield data was saved 
with coordinates to an on-board computer every 3 s. The 
original yield data was then processed by a common sta-
tistical procedure in ArcGIS 10.4.1 (ESRI, Redlands, CA, 
USA) and GS+ (Gamma Design Software, St. Painwell, 
MI, USA) SW. A detailed description of this methodology 
is included in Kumhálová et al. (2011). The 2017 spring 
wheat yield was measured by a Case IH AF 9230 combine 
harvester equipped with a AFS Pro 700 yield monitor (Case 
IH, CNH Industrial) and a DGPS receiver with EGNOS 
correction. The accuracy of this system was ± 0.1 to 0.2 m. 
The yield data was saved with coordinates to an on-board 
computer every second in this case.

Small grain crop yields were measured from 2004 in 
our experimental field. For this reason, there were no prob-
lems with creating a yield frequency map from this data. 
The yield frequency map reflects long-term yield trends, 
which is valuable information for the purposes of this arti-
cle. The yield frequency map Yieldf (Fig. 1a), was derived 
from the yield maps of small grain crops measured from 
2004 to 2018, a total of 8 years when the yield data from 
the small grain crops were available. In other years, oil-
seed rape was grown or the yield monitor did not work. 
The absolute values of the crop yields were re-calculated 
to relative values (equation) and united in one raster layer 
using a cell statistics tool. The variable maximum value for 
the resulting raster was set in order to determine the pro-
ductivity of this field.

Yield frequency map (%):

where: the Yield pixel is the actual value of the pixel and 
the average Yield plot is the average value of the whole plot 
in the surveyed year.

For the purposes of this article, our experimental field 
was divided onto two parts (upper and lower) according 
to topographic attributes (elevation, topography wetness 
index) and field cultivation technology (prevailing direc-
tion of agriculture machinery passes). The Czech Office for 
Surveying kindly provided LiDAR elevation data for this 
purpose. The average elevation of the upper part of the field 
was 349.04 m a.s.l. (range 342.09 – 356.41 m a.s.l.) and the 
lower part was 340.48 m a.s.l. (range 337.43 – 346.42 m 
a.s.l.). The division of the experimental field into the upper 
and lower parts is shown in Fig. 2. The TWI is a non-
dimensional relative index derived from the slope and flow 
accumulation model; with higher TWI values indicating 
water availability. In 2017, different spring wheat cultivars 
were grown on the two parts of the field.

All topography models were created in ArcGIS 10.4.1 
SW; and a detailed description is covered in Kumhálová et 
al. (2014). The total monthly precipitation and temperature 
data comes from the Crop Research Institute’s agro-mete-
orological station in Prague-Ruzyne, and Table 1 lists the 
precipitation rates and temperatures for the observed years 
from the Agrometeorological station (2018) in the Crop 
Research Institute.

Fig. 1. Yield frequency map (a), winter wheat yield of 2005 (b), winter wheat yield of 2011 (c), winter wheat yield of 2017 (d).
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The winter wheat cultivars of Ebi in 2005 and 2009, 
Baletka in 2011 and Brilliant in 2013 were grown on the 
experimental field. Of these, Ebi is a late winter wheat cul-
tivar, moderately tilled and therefore high-standing, with 
the added advantage of resistance to Fusarium Head Blight 
and medium frost resistance. The major risk is susceptibil-
ity to attack by Blumeria graminis, Monographella nivalis, 
Puccinia triticina and Zymoseptoria tritici (Winter wheat 
cultivar Ebi, 2018).

Baletka is an early midwinter cultivar, with low plants 
and very good resistance to crop lodging. This cultivar 
provides medium resistance to fusariosis and frost and has 
a high bulk density, but the weak point is a low resistance 
to Monographella nivalis attack.

Brilliant, meanwhile, is a semi-late cultivar, with low 
plants and medium frost resistance, it presents medium 
resistance to Monographella nivalis (Winter wheat culti-
vars Baletka and Brilliant, 2018).

As stated previously, two spring wheat cultivars were 
also grown on the experimental field in 2017; Seance on 
the upper part of the field and Astrid on the lower por-
tion. Seance is a cultivar with extremely high grain yields 
in both treated and untreated experimental variants in all 
production areas. It is very tolerant to short-term drought, 
and plants reach a medium to lower height with intensive 
offshoots. It is also suitable for early sowing because it is 
resistant to both low temperature and Blumeria graminis 
attack. Moreover, this cultivar provides a high grain yield 
and quality in Czech Republic conditions (Spring wheat 
cultivars Seance 2018). In contrast, remote sensing data 

confirms that Astrid is a half-grown cultivar with very good 
resistance to crop lodging. It is also resistant to Blumeria 
graminis and is a very common cultivar in the Czech 
Republic (Spring wheat cultivars Astrid, 2018).

Landsat images were downloaded from US Geological 
Survey (USGS) storage at C1 Level-1 (Top-Of-Atmosphere 
reflectances in cartographic geometry) (USGS, 2018). Fast 
Line-of-Sight Atmospheric Analysis of the Hypercubes 
module in ENVI SW was used for the atmospheric cor-
rection of images; as in (Domínguez et al., 2015, 2017). 
Table 2 provides the last cloud-free images available in 
the crop vegetation period for 2005, 2009, 2011, 2013 and 
2017 crops. Landsat 5 carried the TM sensor and comprised 
seven spectral bands, including a thermal band. The Eight-
band Landsat 7 had the ETM+ instrument. Unfortunately, 
there was a failure on the Scan Line Corrector on 31st May 

Fig. 2. Division of experimental plot onto upper and lower part 
according to topographic attributes (elevation, topography wet-
ness index) and field cultivation technology (prevailing direction 
of agriculture machinery passes).

Ta b l e  1. Precipitations and temperatures at different growth 
stages by BBCH scale recorded in the experimental field for win-
ter wheat in 2005, 2011, 2013, and for spring wheat in 2017

Year Growth stages Temperature
(°C)

Precipitation
(mm)

Winter wheat

2005

BBCH 0-29 4.0 83.4
BBCH 30-59 13.9 90.4
After BBCH 60 18.4 207.8
Sum – 381.6
Mean 12.1 127.2

2009

BBCH 0-29 4.4 184.2
BBCH 30-59 14.4 109.2
After BBCH 60 17.7 154.6
Sum – 448.0
Mean 12.2 149.3

2011

BBCH 0-29 3.4 104.4
BBCH 30-59 14.8 39.5
After BBCH 60 17.9 257.4
Sum – 401.3
Mean 12.0 133.8

2013

BBCH 0-29 2.9 233.5
BBCH 30-59 13.9 175.8
After BBCH 60 20.1 208.5
Sum – 617.8
Mean 12.3 205.9

Spring wheat

2017

BBCH 0-29 11.0 91.1
BBCH 30-59 18.3 23.0
After BBCH 60 20.5 130.6
Sum – 244.7
Mean 16.6 81.6
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2003. At present, Landsat 8 is the most recently launched 
Landsat satellite. The Landsat 8 payload consists of two 
science instruments – the Operational Land Imager (OLI) 
and the Thermal Infrared Sensor (TIRS). Landsat 8 OLI 
comprises eleven spectral bands (NASA, 18.2. 2020: htt-
ps://landsat.gsfc.nasa.gov/) (Landsat Science, 2020).

Sentinel 2A MSI images were obtained from the 
Copernicus Open Access Hub by ESA at the 2A level 
(Bottom-Of-Atmosphere reflectances in cartographic 
geometry; https://scihub.copernicus.eu/). The Copernicus 
Sentinel 2 mission comprises a constellation of two polar-
orbiting satellites - Sentinel 2A and Sentinel 2B with a push- 
broom sensor MSI. S2 images have a better spectral reso-
lution in comparison with Landsat products. It comprises 
13 spectral bands (https://sentinels.copernicus.eu/web/sen-

tinel/missions/sentinel-2) (Sentinel Online 2020). Selected 
images were pre-processed in SW SNAP 6.0. In the case of 
the Sentinel 2 images, NDVI was calculated for both NIR 
bands (B8 and B8A) in order to establish which band results 
are better for NDVI calculation. Figures 3 and 5 show that 
NDVI spectral index calculations and ENVI 5.5 remote 
sensing software processed all of the images (Excelis, Inc., 
McLean, USA). The resulting rasters of actual yield, the 
yield frequency map and TWI and Sentinel 2 images were 
re-sampled in two spatial resolutions according to Landsat 
8 images (30 m) and Sentinel 2 images (10 m). Only pixels 
completely inside plots and without clouds were consid-
ered, and the rasters were analysed using SW’s ArcGIS 
10.4.1 and Statistica 8.0.

Ta b l e  2. Last cloud-free satellite images available in the crop vegetation period at BBCH crop phenological stages

Satellite Sensor RED range 
(nm)

NIR range
(nm) Date BBCH stage

Landsat 5 TM 630-690 760-900 3-June 2005 61
14-June 2009 69

Landsat 7 ETM+ 630-690 770-900 28-June 2011 60

Landsat 8 OLI 636-673 851-879 16-June 2013 70
11-June 2017
20-June 2017

55
65

Sentinel 2 MSI 650-680 785-899 (B8)
855-875 (B8A)

10-June 2017
20-June 2017

55
65

RED – reflectance in RED band, NIR – reflectance in NIR bands (in B8 and B8A for MSI), TM – Thematic Mapper, ETM+ – 
enhanced thematic mapper plus, OLI – operational land imager, MSI – multispectral instrument.

Fig. 3. Normalized difference vegetation index (NDVI) for 3 June 2005 (a), 14 June 2009 (b), 28 June 2011 (c), 16 June 2013 (d).
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RESULTS AND DISCUSSION

Table 3 provides a summary of the NDVI statistics from 
the selected years of 2005, 2009, 2011, 2013 and 2017, and 
also the satellite images are divided into the upper and 
lower parts as well as the whole experimental field. A sum-
mary of the crop yield statistics for 2005, 2011 and 2017 
are divided into upper and lower areas and also the whole 
experimental field and listed in Table 4. A visualization of 
the calculated yield frequency map and measured wheat 
yields in the years 2005, 2011 and 2017 may be seen in 
Fig. 2.

As may be seen from Table 1, winter wheat was grown 
on our experimental field in these years. In 2005 and 2009, 
the variety was Ebi, in 2011 the variety Baletka was grown 
and in 2013 the variety grown was Brilliant. Figure 3 shows 
the NDVI spectral index calculations for those years.

The 2005 Ebi winter wheat cultivar satellite images 
were acquired on June 3 from BBCH 61 at the flowering 
commencement. The summary statistics for the NDVI sta-
tistics revealed similar values in both parts of the field (see 
Table 3). Although the winter wheat canopy on the entire 
field was more uniform than in the other years monitored, 
precipitation distribution, water supply and management 
zones with different nitrogen fertilizer application were 
the most important factors in determining this cultivar’s 
yield (Kumhálová et al., 2008; Matějková et al., 2010). 
Moreover, they caused a significant displacement of the rel-
atively higher yield to the upper part of the field (Table 4).

This finding is also confirmed in Fig. 4a by the inde-
pendence of NDVI from Yieldf linear regression (calculated 
R2 = 0.08), which means that the distribution of the yield 
on the experimental field was very different from the oth-
er reference years. On the other hand, the relationship of 
NDVI with the Yield was measured in 2005 by combining 
the existing yield monitor with the calculated coefficient of 
determination R2 = 0.44 (Fig. 4e).

The 2009 Ebi winter wheat cultivar satellite images 
were acquired on June 14 from the BBCH 69 flowering 
cessation. Table 1 illustrates that precipitation distribution 
and water supply were uniform throughout the vegetation 
season and that the NDVI winter wheat values on the upper 
part of the plot had a greater dependence on the water sup-
ply as represented by TWI (R2 = 0.51) than the lower part 
which had better water availability (NDVI depended on 
TWI only from 4% on the lower part (Table 5).

The 2009 Yieldf and NDVI values in Table 5 (R2 = 0.29 
for the whole field) were relatively low compared to other 
years, and Table 3 indicates higher NDVI summary val-
ues. While crops in the higher part of the research area had 
a higher standard deviation, those in the lower part were 
more uniform. As a result of sufficient rainfall in 2009, the 
winter wheat crop on both parts of the experimental field 
was well balanced and, consequently, there was a significant 
difference between Yieldf and NDVI values. The yield map 
from a combine harvester was unfortunately not available 
for this year. However, based on the favourable distribution 
of rainfall, it may be assumed that NDVI in 2009 would 

Fig. 4. Normalized difference vegetation index (NDVI, calculated with B8 band for NIR) for 10 June 2017 from Sentinel 2 MSI – the 
north part of the field is deleted due to cloudiness (a), 11 June 2017 from Landsat 8 OLI (b), 20 June 2017 from Sentinel 2 MSI (c), 20 
June 2017 from Landsat 8 OLI (d).
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Ta b l e  3. Summary statistics of NDVI for selected years (2005, 2009, 2011, 2013 and 2017) divided to upper / lower part and the 
whole experimental plot

Date Sensor Part
of plot Count Mean Median Standard 

deviation Min Max Skewness

3 June 2005 L5
Upper 64 0.864 0.874 0.037 0.728 0.925 -1.575
Lower 41 0.866 0.879 0.035 0.754 0.911 -1.353
Whole 105 0.865 0.875 0.036 0.728 0.925 -1.482

14 June 2009 L5
Upper 64 0.907 0.922 0.057 0.710 0.973 -1.793
Lower 42 0.947 0.945 0.020 0.880 0.984 -0.779
Whole 106 0.923 0.937 0.050 0.710 0.984 -2.224

28 June 2011 L7
Upper 64 0.499 0.488 0.075 0.285 0.644 0.001
Lower 42 0.727 0.729 0.088 0.565 0.876 -0.102
Whole 106 0.589 0.576 0.138 0.285 0.876 0.344

16 June 2013 L8
Upper 64 0.878 0.888 0.031 0.767 0.902 -2.172
Lower 42 0.928 0.934 0.018 0.866 0.949 -1.520
Whole 106 0.898 0.896 0.036 0.767 0.949 -1.219

10 June 2017 S2
Upper 623 0.825 0.841 0.041 0.624 0.864 -2.381
Lower 414 0.881 0.887 0.019 0.777 0.903 -2.627
Whole 1037 0.848 0.850 0.041 0.642 0.903 -1.604

11 June 2017 L8
Upper 63 0.915 0.927 0.042 0.761 0.967 -2.153
Lower 42 0.985 0.999 0.048 0.940 1.000 -0.335
Whole 105 0.959 0.943 0.071 0.761 1.000 0.030

20 June 2017 S2
Upper 653 0.750 0.771 0.062 0.526 0.829 -1.183
Lower 409 0.844 0.850 0.028 0.721 0.886 -1.398
Whole 1062 0.787 0.795 0.067 0.526 0.886 -1.025

20 June 2017 L8
Upper 64 0.744 0.759 0.055 0.583 0.808 -1.237
Lower 42 0.844 0.854 0.032 0.756 0.886 -0.883
Whole 106 0.784 0.788 0.069 0.583 0.886 -0.708

L8 = Landsat 8, S2 = Sentinel 2.

Ta b l e  4. Summary statistics of crop yield (t ha-1) for selected years (2005, 2011 and 2017) divided to upper / lower part and the whole 
experimental plot

Year Part
of plot

Yield

Count Mean Median Standard 
deviation Minimum Maximum Skewness

Upper 4973 6.17 6.38 1.16 2.08 9.93 -0.84
2005 Lower 3263 5.95 6.22 1.17 2.09 9.37 -0.75

Whole 8236 6.08 6.32 1.14 2.075 9.93 -0.81
Upper 4442 6.46 6.69 1.83 0.59 13.36 -0.10

2011 Lower 3106 7.90 7.95 1.80 0.67 13.46 -0.28
Whole 7548 7.05 7.22 1.95 0.59 13.46 -0.14
Upper 4277 4.21 4.57 1.43 0.35 9.93 -0.35

2017 Lower 3405 5.94 6.26 1.53 0.37 9.96 -1.29
Whole 7682 4.98 5.16 1.70 0.35 9.96 -0.42
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characterize the yield from individual parts of the field 
better than the relevant yield frequency map. Therefore, if 
a yield map is not available, NDVI provides very valuable 
additional information about yield distribution throughout 
the field as opposed to a yield frequency map.

The 2011 satellite images for Baletka winter wheat 
were acquired on June 28, and were related to BBCH 77. 
There was imbalanced precipitation distribution, with the 
highest value of 257.4 mm recorded in growth stages after 
BBCH 60 in late July. This contrasted sharply with the 
39.4 mm drought level registered in the BBCH 30-59 
growth periods. The yield distribution in 2011 correspond-
ed well with the yield frequency map (R2 = 0.68, Table 5). 
This situation was also reflected to a significant extent by 
satellite image, when the Yieldf/NDVI correlation coeffi-
cient produced a result of 0.67 and Yield/NDVI was 0.59 
(Table 5, Fig. 2c, 3c).

The differences between the upper and lower parts of 
the plot as well as TWI and NDVI/Yield comparisons were 
non-significant (Table 5), and while summary NDVI sta-
tistics identified significant differences between the upper 
and lower area values, there was only a small difference 
in standard deviations. These differences are explained by 
the influence of drought on the winter wheat canopy during 
BBCH 30-59 and by the nutrient supply redistributed by 
rain-water flow to accumulations in the lower part of the 
field. However, during the second half of July rainfall had 
no effect on yield or production quality.

The 2013 satellite images for the Brilliant winter wheat 
cultivar were acquired on June 16 and related to BBCH 70. 
Precipitation was high during this vegetation season, reach-
ing 617.8 mm. This value corresponds to the statistics in 
Tables 3 and 5 and Fig. 4. Figure 3 indicates uniform sum-
mary statistical differences between the upper and lower 

Fig. 5. Coefficients of determination (R2) of the whole field for the year 2005 between Yieldf and NDVI from Landsat 5 (a), for 2009 
between Yieldf and NDVI from Landsat 5 (b), for 2011 between Yieldf and NDVI from Landsat 7 (c), for 2013 between Yieldf and 
NDVI from Landsat 8 (d), for 2005 between Yield and NDVI from Landsat 5 (e), for 2011 between Yield and NDVI from Landsat 7 (f).
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parts of the plot. Although NDVI registered higher values 
in the lower portion of the plot, its higher standard devia-
tion in the upper part of the plot recorded the lowest values 
of all the years monitored. This NDVI inconsistency in 
the field areas visibly divided the upper and lower parts of 
the plot (Fig. 1). The accompanying lower average value 
in the TWI and NDVI determinations was most likely due 
to higher 2013 water availability compared to other years. 
Finally, the Yieldf/NDVI ratio registered a higher depend-
ence in the upper field portion of the plot.

The 2017 satellite images (Fig. 5) for the evaluation of 
spring wheat were acquired at similar times; on June 10 
for Sentinel 2, June 11 for Landsat 8 and for both sensors 
on June 20, and these are therefore comparable. The June 
10/11 2017 evaluations were for the BBCH 55 middle of 
the heading. NDVI crop growth values are explained by 
TWI from 25% (R2 = 0.50) for S2 and 13% for L8; NDVI 
may also be explained by 48% (S2) and 59% (L8) in Yieldf 

variability and 59% (S2) and 50% (L8) in yield variability 
(Table 6). Table 3 shows that the mean NDVI value was 
0.85 for S2 and 0.96 for L8 over the entire field. The Seance 
cultivar in the upper portion of the field had a notably high-
er R2 for all variables (Table 6) and lower NDVI summary 
mean, median, minimum and maximum values (Table 3) 
than the Astrid cultivar in the lower plot area. However, 
a comparison between the S2 and L8 values for the 10th 
and 11th of June 2017 images reveals more variations than 
those from the 20th of June, probably because of the one-
day scan delay. The NDVI R2 for the Sentinel 2/Landsat 

Ta b l e  5. Coefficients of determination between topography 
wetness index (TWI) and normalised difference vegetation index 
(NDVI); and Yield and Yieldf vs NDVI for years 2005-2013

Sensor/
Variety

Coefficients of 
determination

Part of field
Upper Lower Whole

3 June 2005

L5
Ebi

TWI/NDVI 0.267 0.129 0.059
TWI/Yield 0.031 0.014 0.004
Yield/NDVI 0.378 0.619 0.440
Yieldf/NDVI 0.398 0.004 0.078
Yield/Yieldf 0.588 0.028 0.048

14 June 2009

L5
Ebi

TWI/NDVI 0.509 0.043 0.396
TWI/Yield - - -
Yield/NDVI - - -
Yieldf/NDVI 0.243 0.099 0.287
Yield/Yieldf - - -

28 June 2011

L7
Baletka

TWI/NDVI 0.106 0.085 0.124
TWI/Yield 0.257 0.256 0.293
Yield/NDVI 0.509 0.319 0.593
Yieldf/NDVI 0.494 0.434 0.666
Yield/Yieldf 0.634 0.452 0.684

16 June 2013

L8
Brilliant

TWI/NDVI 0.088 0.13 0.129
TWI/Yield - - -
Yield/NDVI - - -
Yieldf/NDVI 0.190 0.089 0.406
Yield/Yieldf - - -

Landsat 5-8 was compared in spatial resolution 30 m; Sentinel 2 
in 10 m. All coefficients are at 5% significance level.

Ta b l e  6. Coefficients of determination between topography 
wetness index (TWI) and normalised difference vegetation index 
(NDVI); and Yield and Yieldf vs NDVI for years 2005-2013

Sensor Coefficients of 
determination

Part of field
Upper part Seance /
Lower part Astrid

Upper Lower Whole
10 June 2017

S2

TWI/NDVI 0.383 0.113 0.250
TWI/Yield 0.381 0.135 0.264
Yield/NDVI 0.536 0.297 0.587
Yieldf/NDVI 0.326 0.248 0.479
Yield/Yieldf 0.396 0.204 0.491

11 June 2017

L8

TWI/NDVI 0.347 0.0006 0.127
TWI/Yield 0.274 0.063 0.192
Yield/NDVI 0.399 0.025 0.503
Yieldf/NDVI 0.367 0.159 0.593
Yield/Yieldf 0.364 0.043 0.477

NDVIS2/NDVI L8 0.689 (S2 NIR = B8)
0.661 (S2 NIR = B8A)

20 June 2017

S2

TWI/NDVI 0.397 0.195 0.285
TWI/Yield 0.381 0.135 0.264
Yield/NDVI 0.674 0.231 0.653
Yieldf/NDVI 0.511 0.479 0.615
Yield/Yieldf 0.396 0.204 0.491

20 June 2017

L8

TWI/NDVI 0.412 0.061 0.236
TWI/Yield 0.274 0.063 0.192
Yield/NDVI 0.530 0.150 0.642
Yieldf/NDVI 0.497 0.282 0.653
Yield/Yieldf 0.364 0.043 0.477

NDVIS2/NDVI L8 0.876 (S2 NIR = B8)
0.797 (S2 NIR = B8A)

Landsat 5-8 was compared in spatial resolution 30 m, Sentinel 2 
in 10 m. All coefficients are at 5% significance level.
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8 for 10/11 of June 2017 was 0.69, and the next satellite 
images from these sensors were taken on June 20 2017 for 
BBCH 65 flowering. The NDVI R2 for Sentinel 2/Landsat 
8 resulted in 0.88 for this day (Table 6). Obviously, the 
resulting dependence of the observed growth factors on the 

Sentinel 2/Landsat 8 satellite data was influenced mainly by 
spatial resolution (10 m/pixel for Sentinel 2 and 30 m/pixel 
for Landsat 8) and, in the case of a one-day scan delay, also 
by another condition of the scanned crop because of the 
rain on June 9th and 10th and no rain on June 11th.

Fig. 6. Coefficients of determination (R2) of the whole field for 20 June 2017 – between Yield and NDVI from Landsat 8 (a), Yieldf and 
NDVI from Landsat 8 (b), Yield and NDVI from Sentinel 2 (c), Yieldf and NDVI from Sentinel 2 (d).

Fig. 7. Coefficients of determination (R2) – the upper part of the field for 20 June 2017 from Sentinel 2 between Yield and NDVI (a), 
Yieldf and NDVI (b), and the lower part of the field for 20 June 2017 from Sentinel 2 between Yield and NDVI (c), Yieldf and NDVI (d).
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The Wilcoxon test confirmed the statistically significant 
difference between NDVI derived from Sentinel 2 and the 
Landsat 8 data for both the upper and lower part of our 
experimental field at a 0.001 significance level in the case 
of 10/11 June scanning. On the other hand, this difference 
was confirmed for the upper part of the field only in the 
case of the scans of the 20th of June and no significant dif-
ferences were found in the lower part of the field. This was 
due to a more even distribution of yield in the lower part 
of the plot (Fig. 2d). With a higher degree of data reso-
lution from Sentinel 2, the yield variability can be more 
accurately estimated than from the lower resolution of the 
Landsat 8 data (Table 6, Yield/NDVI coefficients of deter-
mination). On the other hand, a greater generalization of 
the Landsat 8 data may correlate more with the average 
yield data from several years as represented by the yield 
frequency map (Table 6 Yieldf/NDVI). The total precipita-

tion was 1.3 mm on June 9, 0.2 mm on June 10 and there 
was no rain on June 11. This influenced the resulting crop 
spectral response values in the summary statistics because 
water on the plant leaves usually decreases these values 
in the canopy. In addition, the leaf pigment concentration, 
water content and structure caused variations in leaf reflec-
tance, transmission and absorption values yield (Scudiero 
et al., 2014; Van Leeuwen and Huete, 1996), and these 
differences may be influenced by other crop spectral char-
acteristics and a different range of the red and NIR bands of 
the sensors (Table 2). The NDVI of the 2017 crop growth 
values for the 20th of June may be explained by the differ-
ence in TWI from 29% (R2 = 0.29) for S2 and 24% for L8; 
NDVI was explained by a 62% S2 and 65% L8 Yieldf varia- 
bility and a 65% S2 and 64% L8 yield variability (Table 6). 
Figure 6 show s the regression between these variables.

Fig. 8. Coefficients of determination (R2) of the upper part of the field for selected years (2005, 2009, 2011, 2013 and 2017) between 
R2 Yieldf /NDVI and precipitation – in growth stages BBCH 0-29 (a), in BBCH 30-59 (b), in BBCH after 60 (c); R2 of the lower part of 
the field for selected years between R2 Yieldf /NDVI and precipitation - in growth stages BBCH 0-29 (d), in BBCH 30-59 (e), in BBCH 
after 60 (f); R2 of the whole field for selected years between R2 Yieldf/NDVI and precipitation - in growth stages BBCH 0-29 (g), in 
BBCH 30-59 (h), in BBCH after 60 (i).
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It is noteworthy that no significant differences were 
found when comparing the sensor values derived in this 
study. The weather conditions in 2017 ensured vigorous 
plant growth and while this corresponded with the yield 
frequency map for the plot as a complex, Table 6 and Fig. 7 
emphasize that the upper part of the field had a higher 
determination of all of the compared variables. Table 3 
shows the lower summary mean, median, minimum and 
maximum NDVI statistical values in the higher part of the 
field as opposed to the lower part of the field as noted in 
the previous comparison. This may have been caused by 
the cultivar response to stable local conditions. In addition, 
Table 4 illustrates that the yield in the lower part of the 
research field was significantly higher than it was in the 
upper part due to the greater supply of water from water 
flow accumulation (Kumhálová et al., 2011).

Yield is the most complex and important target in field 
crops, and challenges still remain in precisely describing 
this and improving accurate predictions from seasonal data 
Nearing et al., 2010; Thorp et al., 2001). Further research 
is required to define the most suitable sensor platform 
which will improve soil and crop management in different 
geographical conditions (Flynn et al., 2020). Despite the 
conclusion of Scudiero et al. (2014) that Landsat spatial 
resolution was too coarse to capture soil and crop spatial 
variability, on the basis of our results it may be stated that 
Landsat imagery was crucial in capturing the historical 
development of wheat cultivars on this study field.

The influence of topographic characteristics on the 
2004-2015 yields was described in detail in previous arti-
cles (e.g. Kumhálová and Matějková, 2017; Kumhálová et 
al., 2011). Therein, it was established that the influence of 
field topography on crop yield in drier and warmer years 
was more distinct than in wetter and colder years. This 
insight is important for the consideration of the warmer and 
drier year of 2017, where selected Seance and Astrid cul-
tivars exhibited specific properties matching the enforced 
requirements of different parts of the studied plot. The low-
er parts were more susceptible to water accumulation, and 
the effects of this are exemplified in the lower area crop 
lodging which was reported for the 2010 oat crop during 
intensive rainfall at the BBCH 80 growth stage (Kumhálová 
et al., 2014). In contrast, Fig. 8 demonstrates that the upper 
plot areas can be adversely affected by drought. With lower 
precipitation in the upper part of the field in the early vege-
tation development stages, the relationship between NDVI 
and the yield frequency map (Table 5) was more prominent 
(2005: R2 = 0.398, 2011: R2 = 0.494) than in the years with 
higher precipitation amounts (2009: R2 = 0.243, 2013: R2 
= 0.190). This trend was not apparent in the lower part of 
the field, even when the field was evaluated as a whole. It 
is emphasized by the information derived from Fig. 8. The 
relationship between NDVI and yield became more obvi-
ous with lower rainfall in the early stages of wheat growth 
in the upper part of the field (R2 = 0.6 – 0.7) than in the 

years with higher rainfall (R2 = 0.45 – 0.5). However, this 
trend was also not so obvious in the lower part of the field, 
nor when the field as a whole was evaluated.

From a practical point of view, the quality of wheat 
yield prediction provided by satellite NDVI imagery varies 
according to slope and weather conditions; and the predic-
tion on sloped plots is therefore more precise in drier spring 
weather. This is explained by different Leaf Area Index val-
ues, the level of planting and the yields achieved during 
dry spring weather. When the evaluated area includes pix-
els is affected by water scarcity, there is a higher range of 
NDVI values and yields and the NDVI/yield relationship 
is altered. On the basis of our results, it may be concluded 
that the quality of the yield prediction on the more sloping 
areas is more dependent on precipitation than on the less 
sloping parts, and inversely proportional to it. Based on our 
results, it would also seem clear that a good knowledge of 
local conditions, such as topography, weather conditions, 
the course of precipitation, but also the crop variety can 
fundamentally affect satellite image interpretation. For 
example, when comparing the NDVI calculated from the 
satellite images shown in Fig. 5d of June 20, 2017, and the 
image taken from the available satellite data on June 16, 
2013 in Fig. 3d, it is clear that these two images are very 
similar. There is a clear division of the experimental plot 
into two parts in both images. However, in the case of the 
2013 picture, only one winter wheat variety (Brilliant) was 
grown on the plot, while in 2017 there were two differ-
ent varieties of spring wheat (Seance in the upper part and 
Astrid in the lower one).

These results are in agreement with the study of Jelínek 
et al. (2019). The study demonstrated the uncertainty of 
yield predictions based on a yield frequency map and an 
NDVI frequency map which may have their limitations 
in agricultural praxis. While the best model for crop yield 
estimation was the yield frequency map for cereals which 
explains the yield variability from 44% on average for all of 
the selected years, so the best model for crop condition esti-
mation seems to be the NDVI frequency map with a spatial 
resolution of 10 m according to the Sentinel 2 image from 
all of the years examined. This model explained the winter 
wheat crop structure from 96% and from 38% for all of the 
selected NDVI images. The models were also more signifi-
cant for cereals and in drier and warmer years as well.

The model by Gili et al. (2017) and a comparison of 
the three methods of determining management zones estab-
lished that the choice depends on the objectives of crop 
management and the main yield-limiting factors and agro-
ecological conditions of the site. The interaction of these 
conditions and weather conditions may mask the differenc-
es in potential productivity between zones in a particular 
growing season. Moreover, the differences between the 
potential crop productivity zones can significantly influ-
ence the spectral response of the crops. These combined 
findings support the results of this study. In addition, 
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Vincini et al. (2016) researched the sensitivity of leaf chlo-
rophyll empirical estimators obtained at Sentinel 2 spectral 
resolution for different canopy structures. These authors 
determined that although the Chlorophyll Vegetation Index 
(CVI) is a potential tool for leaf chlorophyll estimation by 
Sentinel-2 data at 10 m spatial resolution, better results are 
obtained by differentiating between the indices according 
to leaf-angle distribution. However, this requires a prelim-
inary knowledge of the crop canopy type which may be 
utilized in precision farming, but is not feasible for regional 
scale application.

A geometrical analysis of the canopy includes plant 
height, the number and distribution of leaves and also 
the leaf colour, size and angle, the plant canopy spec-
tral response is primarily determined by water stress. 
Moreover, the relative contributions of physiognomy fea-
tures the canopy spectral response which is dependent on 
the plant species and cultivars. These factors include plant 
and canopy geometry as well as leaf anatomy and physiolo-
gy (Jackson and Ezra, 1985; Ehleringer and Forseth, 1980). 
It is therefore essential to have an adequate knowledge of 
the monitored canopy, this factor allowed the presented 
study to establish that crop spectral response is subject to 
overall cultivar features and their resistance to extreme 
weather conditions. In addition, although it is not always 
easy to estimate the growth stage from the spectral index 
values, the final crop yield may be estimated from the spec-
tral index spatial distribution and trend. Similarly, while it 
may be difficult to choose the best available plant species 
and cultivar for a specific sloping plot, for example, a study 
of five wheat cultivars by Grohs et al. (2009) confirmed 
that the difference in cultivar reflectance values in the near 
infrared and red spectra does not sufficiently indicate their 
productive potential.

Cattani et al. (2017) then added results based on the 
In-Season Estimate of Yield model, where NDVI is nor-
malized by degree-day accumulated from Feekes growth 
stages 2 and 8. This appears to be a more consistent meth-
od of estimating grain yield, and in the context of climate 
change, this model may be more reliable and accurate for 
grain yield estimation in areas with higher temperatures 
and a lack of precipitation than solely calculating the spec-
tral index, as occurred in this study. Moreover, the benefits 
of NDVI are controversial regarding the saturation effect 
and although it lacks sensitivity to alterations in LAI and 
biomass (Povh et al., 2008), it remains a proven spectral 
index with many research citations. The indices, however, 
can be simply calculated from Sentinel 2 and Landsat 8 
images, and this will ensure historical temporal continu-
ity. The replaceability of Sentinel 2 and Landsat 8 satellite 
images for agricultural purposes remains an open question. 
Although there is a significant overlap in the results pro-
duced by near infrared and red bands, the results derived 
from the images may differ. Mandanici and Bitelli (2016) 
compared the spectral differences between the Landsat 8 

OLI and Sentinel 2 MSI sensors. They evaluated bands and 
selected indices, including NDVI. They calculated NDVI 
with B8A (864 nm) and B4 (665 nm). On the basis of their 
study it was reported that the correlation of the Pearson 
coefficient reached values ranging from 0.936 to 0.999 as 
measured in different geographical areas (especially semi-
arid areas, deserts or lakes), land covers and climatic 
conditions. We calculated the coefficient of determination 
between NDVI derived from Sentinel 2 (with bands B8 
and B4) and Landsat 8 images R2 = 0.876 (R = 0.938); and 
R2 = 0.797 (R = 0.893) for the bands B8A and B4. Our 
study showed that for agricultural purposes, in terms of our 
evaluation, it is more suitable to use the band B8 for NDVI 
calculations.

Finally, climate change is an important topic in the cur-
rent literature (Rezaei et al., 2018). For example, Olesen 
et al. (2011) described its impact on crops, including win-
ter wheat, and considered that drought and heat stress are 
increasing throughout Europe. In order to counteract the 
potentially harmful effects of climate change, farmers can 
adapt by changing the cultivation time, their variety and 
cultivar choice, adopt water saving techniques and irriga-
tion and also crop-breeding techniques. Furthermore, these 
results provide a guide for central European agronomists in 
the selection of spring and winter wheat cultivars suitable 
for individual site-specific plots.

Our results present important knowledge concern-
ing wheat cultivation and yields over a period of thirteen 
years, but since they are only based on one site, it would be 
beneficial to assess additional sites, especially those more 
affected by insufficient water. This research could also 
include monitoring selected cultivars resistant to extreme 
weather conditions.

CONCLUSIONS

1. The development of sensors carried on satellites is 
advancing rapidly. In the case of the American Landsat 
satellites, although the sensors gradually improved, the 
mission continued along the same lines. Therefore, the 
results of this mission are more comparable within a his-
torical context. Nevertheless, the US Mission Landsat 
was then followed by a more modern European mission, 
Sentinel 2. In terms of agricultural use, it is an issue that 
the two bands offered by Sentinel 2 from the NIR range, 
B8 and B8A can be used for the calculation of the normali-
zed difference vegetation index. Based on our results, we 
recommend the use of the Sentinel 2 B8 band to generate 
a better comparison with the Landsat mission results for 
agricultural purposes within a historical context.

2. In particular, the results confirmed that selected 
wheat cultivars reacted significantly to weather conditions 
and topography. A higher yield was recorded in the lower 
part of the experimental field, with the exception of 2005, 
this apparent anomaly was caused by the increased water 
supply in the later growth stages and management zones 
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with different regimes of nitrogen fertilizer application. 
Similarly, the normalized difference vegetation index val-
ues were higher in the lower part of the field, regardless of 
the spectral response of the individual cultivars. Also, the 
quality of yield prediction in the upper, more steeply slop-
ing part of the field depended more on precipitation and 
water supply than the lower portion with a lesser inclina-
tion, and this relationship was inversely proportional.

3. At this point, it should be noted that the effects of 
other yield-generating factors, such as the nutrient content 
of the soil, weather conditions or soil physical properties 
(especially compaction), etc., were beyond the scope of 
this research. These factors, together with a relatively large 
number of other variables that we could not control (crop 
rotation, etc.), of course, reduces the strength of the conclu-
sions presented here to a slight extent.

4. With regard to long-term climate change, the field is 
divisible into site-specific zones based on the yield frequen-
cy map and canopy spectral response. In addition, the 2017 
trial also contained drought-resistant cultivars which sta-
bilized the yield. Experimental results confirmed that both 
the Landsat 8 OLI and Sentinel 2 MSI satellite systems are 
successful in crop yield prediction and crop stage estima-
tion, and although only one vegetation season with spring 
wheat and two satellite sources were assessed, the satellite 
systems complemented each other. Moreover, they have the 
capacity to consolidate future data concerning topography 
and crop yield potential which will prove historically impor-
tant. Furthermore, the coefficient of determination between 
the normalized difference vegetation index derived from 
Sentinel 2 and the Landsat 8 images scanned on the same 
day was 0.876 with the use of the B8 band for near infrared. 

5. In conclusion, all information gained from this 
research, including the spectral properties of both crops and 
cultivars, is important for the management of agricultural 
plots and their response to climate change. Specialized 
knowledge of the chosen crops and varieties is crucial, and 
when the results from the Seance and Astrid cultivars in 
2017 are compared to those of the Brilliant cultivar from 
2013, it is evident that the amount of the water within the 
growth can significantly affect the growth’s spectral char-
acteristics. Therefore, a lack of specific cultivar knowledge 
and its emission spectra under different climatic conditions 
can prevent the identification of crop properties such as the 
accurate estimation of both crop yield and leaf nitrogen 
content through the spectral reflection of the vegetation.
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